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ON PERFECTLY GENERATING PROJECTIVE CLASSES
IN TRIANGULATED CATEGORIES

George Ciprian Modoi
Faculty of Mathematics and Computer Science, Chair of Algebra,
“Babeş-Bolyai” University, Cluj-Napoca, Romania

We say that a projective class in a triangulated category with coproducts is perfect if
the corresponding ideal is closed under coproducts of maps. We study perfect projective
classes and the associated phantom and cellular towers. Given a perfect generating
projective class, we show that every object is isomorphic to the homotopy colimit of a
cellular tower associated to that object. Using this result and the Neeman’s Freyd-style
representability theorem, we give a new proof of Brown Representability Theorem.
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INTRODUCTION

The notion of projective classes in pointed categories goes back to Eilenberg
and Moore [4]. In this article we consider projective classes in a category � which is
triangulated. In this settings projective classes may be defined as pairs �����, with
� ⊆ � a class of objects and � ⊆ �→ a class of maps (here �→ is the category
of all maps in � ) such that � is closed under direct factors, � is an ideal (that
means ��� ∈ �, and �� � ∈ �→, implies �+ �′� ��� ∈ �, whenever the operations

are defined), the composite p → x
�→ x′ is zero for all p ∈ � and all � ∈ �, and each

object x ∈ � lies in an exact triangle �−1x′ → p → x
�→ x′, with p ∈ � and � ∈ �.

Note also that all projective classes which we deal with are stable under suspensions
and desuspensions in � . Fix an object x ∈ � . Choosing repeatedly triangles as
above, we construct two towers in � associated to x, namely the phantom and
the cellular tower. The whole construction is similar to the choice of a projective
resolution for an object in an abelian category.

Let � be a regular cardinal. We say that a projective class ����� is �-perfect,
provided that the ideal � is closed under �-coproducts in �→, that is coproducts
of less that � maps, respectively perfect if it is �-perfect for all cardinals �.
For projective classes which are induced by sets our definition of perfectness is
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996 MODOI

equivalent to that of [10], explaining our terminology. Further we say that �����
generates � if for any x ∈ � , � ��� x� = 0 implies x = 0. It seems that an important
role is played by ℵ1-perfect projective classes, that means projective classes �����
with � closed under countable coproducts. In this case we prove that the homotopy
colimit of a tower whose maps belong to � is zero (see Lemma 2.2). In particular
the homotopy colimit of the phantom tower associated to an object vanishes. If, in
addition, we assume that ����� generates � then Theorem 2.5 tells us that every
object x is (isomorphic to) the homotopy colimit of every associated cellular tower.
Note also that the hypothesis of ℵ1-perfectness seems to be implicitly assumed by
Christensen in [3], as we may see from Proposition 2.3 and Remark 2.4.

Using the product of two projective classes defined in [3], we recall the
construction of the nth power ��∗n��∗n� of a projective class �����, for n ∈ �.
In [14] it is shown that, if ����� is induced by a set, then for every cohomological
functor F 	 � → �b which sends coproducts into products the comma category
�∗n/F has a weak terminal object, for all n ∈ �. Provided that ����� is ℵ1-perfect,
we use the fact that every x is the homotopy colimit of its cellular tower in order
to extend the above property to the whole category � /F . We deduce a version
of Brown Representability Theorem for triangulated categories with coproducts
which are ℵ1-perfectly generated by a projective class satisfying the additional
property that every category �∗n/F has a weak terminal object, for every n ∈ �
and every cohomological functor which sends coproducts into products F 	 � → �b
(see Theorem 3.7). In particular if the projective class is induced by a set, then this
additional property is automatically fulfilled, and we obtain in Corollary 3.8 the
version of Brown Representability due to Krause in [8, Theorem A], but our proof
is completely different, as it is based on the Freyd–style representability theorem
of [14].

For our version of Brown Representability the finite powers of a projective
class is all what we need. We still treated the case of transfinite ordinals, following
a suggestion of Neeman (see [14, Remark 0.10]). A minor modification of the
arguments in [14] shows that if � = �∗i for some ordinal i, then the Brown
representability theorem holds for � . We fill in the details this observation in
Lemmas 3.3 and 3.4. On the other hand, if every x ∈ � is the homotopy colimit of
its �-cellular tower, then � = �∗
 ∗�∗
, where 
 is the first infinite ordinal. But
due to a technical detail we are not able to deduce, as in the case of finite ordinals
(see [3, Note 3.6]), that �∗
 ∗�∗
 = �∗�
+
�.

In all categories we consider, the homomorphisms between two objects form
a set and not a genuine class. For undefined terms and properties concerning
triangulated categories, we refer to [16]. The standard reference for abelian category
is [5]. For general theory of categories we refer the reader to [13] or [17].

1. PROJECTIVE CLASSES AND ASSOCIATED TOWERS

Consider a preadditive category � . Then by a � -module we understand a
functor X 	 � op → �b. Such a functor is called finitely presented if there is an exact
sequence of functors

� �−� y� → � �−� x� → X → 0
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ON PERFECTLY GENERATING PROJECTIVE CLASSES 997

for some x� y ∈ � . Using the Yoneda Lemma, we know that the class of all natural
transformations between two � -modules X and Y denoted Hom� �X� Y� is actually
a set, provided that X is finitely presented. We consider the category mod�� � of all
finitely presented � -modules, having as morphisms sets Hom� �X� Y� for all X� Y ∈
mod�� �. The Yoneda functor

H = H� 	 � → mod�� � given by H� �x� = � �−� x�

is an embedding of � into mod�� �, according to the Yoneda Lemma. If, in addition,
� has coproducts, then mod�� � is cocomplete and the Yoneda embedding preserves
coproducts. It is also well known (and easy to prove) that, if F 	 � → � is a
functor into an additive category with cokernels, then there is a unique, up to a
natural isomorphism, right exact functor F̂ 	 mod�� � → �, such that F = F̂ �H�

(see [9, Universal property 2.1]). Moreover, F preserves coproducts if and only if
F̂ preserves colimits.

In this article, the category � will be triangulated. Recall that � is supposed
to be additive. A functor � → � into an abelian category � is called homological
if it sends triangles into exact sequences. A contravariant functor � → � which
is homological regarded as a functor � op → � is called cohomological (see [16,
Definition 1.1.7 and Remark 1.1.9]). An example of a homological functor is the
Yoneda embedding H� 	 � → mod�� �. We know: mod�� � is an abelian category,
and for every functor F 	 � → � into an abelian category, the unique right exact
functor F̂ 	 mod�� � → � extending F is exact if and only if F is homological, by
[12, Lemma 2.1]. Moreover, mod�� � is a Frobenius abelian category, with enough
injectives and enough projectives, by [16, Corollary 5.1.23]. Injective and projective
objects in mod�� � are, up to isomorphism, exactly objects of the form � �−� x� for
some x ∈ � , provided that the idempotents in � split.

From now on, we suppose � has arbitrary coproducts, so the idempotents in
� split according to [16, Proposition 1.6.8]. First we record some easy but useful
results. Recall that a homotopy colimit of a tower of objects and maps

x0
�0→ x1

�1→ x2
�2→ x3 → · · ·

is defined via the triangle∐
n∈�

xn
1−�→ ∐

n∈�
xn → hocolim xn → �

∐
n∈�

xn�

where � is the unique morphism which makes commutative all the diagrams of the
form
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998 MODOI

Obviously, the homotopy colimit of a tower is unique, up to a non unique
isomorphism. We denote sometimes the map � by shift, especially if we don’t need
an explicit notation for the maps in the tower.

The following Lemma is the dual of [2, Lemma 5.8(2)]. Note that we give
a more general version, replacing the category �b (more precisely �bop) with an
abelian AB4 category �, where the derived functors colim�i� of the colimits are
computed in the usual manner, by using homology of a complex. Moreover, [2,
Lemma 5.8(1)] is a direct consequence of this dual, together with the exactness of
colimits in �b (that is colim�1� = 0).

Lemma 1.1. Consider a tower x0
�0→ x1

�1→ x2
�2→ x3 → · · · in � . If F 	 � → � a

homological functor which preserves countable coproducts into an abelian AB4
category �, then we have a Milnor exact sequence

0 → colimF�xn� → F�hocolim xn� → colim�1�F��xn� → 0

and colim�i�F�xn� = 0 for i ≥ 2.

Corollary 1.2. Consider a tower x0
�0→ x1

�1→ x2
�2→ x3 → · · · in � . If F 	 � → � is

a homological functor, which preserves countable coproducts into an abelian AB4
category, such that F��i�n� = 0 for all i ∈ � and all n ≥ 0, then F�hocolim xn� = 0.

Proof. With our hypothesis we have colimF�xn� = 0 = colim�1�F��xn�, so
F�hocolim xn� = 0 by the Milnor exact sequence of Lemma 1.1. �

Recall that a pair ����� consisting of a class of objects � ⊆ � and a class of
morphisms � is called projective class if �n��� ⊆ � for all n ∈ �,

� = �p ∈ � 	� �p� �� = 0 for all � ∈ ���

� = �� ∈ � 	� �p� �� = 0 for all p ∈ ��

and each x ∈ � lies in a triangle �−1x′ → p → x → x′, with p ∈ � and x → x′ in
� (see [3]). Note that we work only with projective classes which are stable under
(de)suspensions; generally, it is possible to define a projective class without this
condition. Clearly, � is closed under coproducts and direct factors, � is an ideal,
and � is stable under (de)suspensions. Moreover, � and � determine each other.
A triangle of the form x → y → z → �x is called �-exact if the morphism z → �x
belongs to �. If this is the case, the morphisms x → y and y → z are called �-monic,
respectively �-epic.

Let ����� be a projective class in � . The inclusion functor  	 � → � induces
a unique right exact functor ∗ making commutative the diagram
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ON PERFECTLY GENERATING PROJECTIVE CLASSES 999

where H� and H� are the respective Yoneda functors. More explicitly,

∗���−� p�� = � �−� p�

for all p ∈ �, and ∗ is right exact. Moreover, since  is fully-faithful, ∗ has the
same property [9, Lemma 2.6].

A weak kernel for a morphism y → z in a preadditive category � is a
morphism x → y such that, the induced sequence of abelian groups ��t� x� →
��t� y� → ��t� z� is exact for all t ∈ �. Return to the case of a projective
class ����� in the triangulated category � . To construct a weak kernel of a
morphism q → r in � we proceed as follows: The morphism fits into a triangle
x→ q→ r→�x; let �−1x′ → p → x → x′ an �-exact triangle with p ∈ �; then the
composite map p → x → q gives the desired weak kernel. Therefore, mod��� is
abelian (for example by [9, Lemma 2.2], but this is also well-known). Moreover, the
restriction functor

∗ 	 mod�� � → mod���� ∗�X� = X �  for all X ∈ mod�� �

is well defined, and it is the exact right adjoint of ∗, by [8, Lemma 2].
We know by [3, Lemma 3.2] that a pair ����� is a projective class, provided

that � is a class of objects closed under direct factors, � is an ideal, � and �
are orthogonal (that means, the composite p → x → x′ is zero for all p ∈ � and all
x→ x′ in �) and each object x ∈ � lies in an �-exact triangle �−1x′ → p → x → x′,
with p ∈ �. If � is a set of objects in � , then Add� denotes, as usual, the class
of all direct factors of arbitrary coproducts of objects in � . The following lemma is
straightforward (see also [3, Definition 5.2 and the following paragraph]).

Lemma 1.3. Consider a set � of objects in � which is closed under suspensions and
desuspensions. Denote by � = Add� , and let � be the class of all morphisms � in �
such that � �s� �� = 0 for all s ∈ � . Then ����� is a projective class.

We will say that the projective class ����� given in Lemma 1.3 is induced
by the set � . Note also that if � is an essentially small subcategory of � , such
that �n�� � ⊆ � for all n ∈ �, then we will also speak about the projective class
induced by � , understanding the projective class induced by a representative set
of isomorphism classes of objects in � . If, in particular, � is a regular cardinal,
� consists of �-small objects and it is closed under coproducts of less than � objects
(for example, if � is the subcategory of all �-compact object of � ), then mod���

is equivalent to the category of all functors � op → �b which preserve products of
less than � objects, by [11, Lemma 2], category used extensively in [16] as a locally
presentable approximation of mod�� �.

Remark 1.4. Under the hypotheses of Lemma 1.3, a map x → y in � is �-monic
(�-epic) if and only if the induced map � �s� x� → � �s� y� injective (respectively,
surjective) for all s ∈ � .
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1000 MODOI

As in [2, 3], given a projective class ����� in � , we construct two towers of
morphisms associated to each x ∈ � as follows: We denote x0 = �−1x. Inductively,
if xn ∈ � is given, for n ∈ �, then there is an �-exact triangle

�−1xn+1 → pn → xn
�n→ xn+1

in � , by definition of a projective class. Consider then the tower:

�−1x = x0
�0→ x1

�1→ x2
�2→ x3 → · · · �

Such a tower is called a �-phantom tower of x. The explanation of the terminology
is that morphisms �n belong to � for all n ∈ �, and � may be thought as a
generalization of the ideal of classical phantom maps in a compactly generated
triangulated category. (Clearly, � coincides with the ideal of classical phantom
maps, provided that the projective class ����� is induced by the full essentially
small subcategory consisting of all compact objects.)

Observe that there are more �-phantom towers associated to the same element
x ∈ � , according with the choices of the �-epic map pn → xn at each step n ∈ �.
The analogy with projective resolutions in abelian categories is obvious.

Choose an �-phantom tower of x ∈ � as in the definition above. We denote
by �n the composed map �n−1 � � � �1�0 	 �

−1x → xn, for all n ∈ �∗, and we set
�0 = 1�−1x. Then let xn be defined, uniquely up to a nonunique isomorphism, by

the triangle �−1x
�n

→ xn → xn → x. The octahedral axiom allows us to complete the
commutative diagram

with the triangle in the second column.
Therefore, we obtain an another tower of objects

0 = x0 → x1 → x2 → x3 → · · · �

where for each n ∈ � we have a triangle pn → xn → xn+1 → �pn, with pn ∈ �
chosen in the construction of the above �-phantom tower. Such a tower is called a
�-cellular tower of x ∈ � .
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ON PERFECTLY GENERATING PROJECTIVE CLASSES 1001

Considering homotopy colimits of the �-phantom and �-cellular towers, we
obtain a sequence

�−1x → hocolim xn → hocolim xn → x�

It is not known whether the induced sequence can be chosen to be a triangle (see
[2, p. 302]). However, the answer to this question is yes, provided that � is the
homotopy category of a suitable stable closed model category in the sense of [7].

Proposition 1.5. Let ����� be a projective class in � , and let denote by  	 �→�
the inclusion functor. For every x ∈ � , we consider an �-phantom tower and an
�-cellular tower as above. Then we have an exact sequence

0 →∐
�∗ �H� ��x

n�
1−shift−→ ∐

�∗ �H� ��x
n� → �∗ �H� ��x� → 0�

where ∗ 	 mod�� � → mod��� is the restriction functor. Consequently,

colim�∗ �H� ��x
n� 
 �∗ �H� ��x� and colim�1��∗ �H� ��x

n� = 0�

Proof. By applying the functor ∗ �H� to the diagram above defining an �-cellular
tower associated to x, we obtain a commutative diagram in the abelian category
with coproducts mod���:

The conclusion follows by [10, Lemma 7.1.2]. �

2. PERFECTLY GENERATING PROJECTIVE CLASSES

Consider a cardinal �. Recall that � is said to be regular provided that it is
infinite and it cannot be written as a sum of less than � cardinals, all smaller than �.
By �-coproducts we understand coproducts of less that �-objects.

Proposition 2.1. Let � be a regular cardinal and let ����� be a projective class
in � . Denote by  	 � → � the inclusion functor. Then the functor ∗ 	 mod�� � →
mod���, ∗�X� = X �  preserves �-coproducts if and only if � is closed under
�-coproducts (of maps).

Proof. The exact functor ∗ having a fully-faithful left adjoint induces an
equivalence mod�� �/Ker∗ → mod���. Since mod�� � is AB4, we know that ∗
preserves �-coproducts if and only if Ker∗ is closed under �-coproducts. Obviously
� = �� 	 �∗ �H� ���� = 0�. Using the proof of [12, Section 3], we observe that

Ker∗ = �X ∈ mod�� � 	X 
 imH� ��� for some � ∈ ���
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1002 MODOI

Now suppose � to be closed under �-coproducts, and let �M� 	 � ∈ �� be a set of
objects in Ker∗, with the cardinality less than �. Thus M� 
 imH� ���� for some
�� ∈ �, for all � ∈ �. Therefore, using again condition AB4 (coproducts in mod�� �
are exact, so they commute with images), we obtain:

∐
�∈�

M� 

∐
�∈�

imH� ���� 
 im
( ∐

�∈�
H� ����

)

 imH�

( ∐
�∈�

��

)
�

showing that
∐

�∈� M� ∈ Ker∗.
Conversely, if Ker∗ is closed under �-coproducts, and ��� 	 � ∈ �� is a set of

maps in �, with the cardinality less than �, then

∗

(
imH�

( ∐
�∈�

��

))
= ∗

( ∐
�∈�

imH� ����

)
= 0�

so � is closed under �-coproducts. �

We call �-perfect the projective class ����� if the equivalent conditions
of Proposition 2.1 hold true. The projective class will be called perfect if it is
�-perfect for all regular cardinals �, that is, � is closed under arbitrary coproducts.
Following [3], we say that a projective class ����� generates � if for any x ∈ � ,
we have x = 0 provided that � �p� x� = 0, for each p ∈ �. Immediately, we can see
that ����� generates � if and only if  �H� 	 � → mod��� reflects isomorphisms,
that is, if � 	 x → y is a morphism in � such that the induced morphism � �H� ����
is an isomorphism in mod���, then � is an isomorphism in � , where  	 � → �
denotes, as usual, the inclusion functor. Another equivalent statement is � does not
contain nonzero identity maps. Consider now an essentially small subcategory � of
� which is closed under suspensions and desuspensions, and ����� the projective
class induced by � . Since coproducts of triangles are triangles, we conclude by
Remark 1.4 that � is closed under coproducts exactly if � satisfies the following
condition: If xi → yi with i ∈ I is a family of maps, such that � �s� xi� → � �s� yi�
is surjective for all i ∈ I , then the induced map � �s�

∐
xi� → � �s�

∐
yi� is also

surjective. Thus ����� perfectly generates � in the sense above if and only if �
perfectly generates � in the sense given in [10, Section 5] (see also [8] for a version
relativized at the cardinal � = ℵ1).

Lemma 2.2. Consider a tower x0
�0→ x1

�1→ x2
�2→ x3 → · · · in � . If ����� is an

ℵ1-perfect projective class in � and �n ∈ � for all n ≥ 0, then hocolim xn = 0.

Proof. We apply Corollary 1.2 to the homological functor, which preserves
countable coproducts ∗ �HT 	 � → mod���, where  	 � → � is the inclusion
functor. �

Proposition 2.3. If ����� is a ℵ1-perfect projective class in � , then a necessary
and sufficient condition for ����� to generate � is

lim
n∈�

� �xn� y� = 0 = lim
n∈�

�1�� �xn� y��
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ON PERFECTLY GENERATING PROJECTIVE CLASSES 1003

for all x� y ∈ � and any choice

x = x0
�0→ x1

�1→ x2
�2→ x3 → · · · �

of an �-phantom tower of x. Here by lim�1� we understand the first derived functor of
the limit.

Proof. Let show the sufficiency first. If x ∈ � has the property � �p� x� = 0 for all
p ∈ �, then 1x ∈ � and a �-phantom tower of x is

x = x0
1x→ x1 = x

1x→ x2 = x → · · · �

Then 0 = limn∈�� �xn� x� = � �x� x�, so x = 0.
Now we show the necessity. Let x� y ∈ � , and consider an �-phantom tower

of x as above. Applying the functor � �−� y� to this tower, we obtain a sequence of
abelian groups

� �x� y� = � �x0� y�
��0�∗← � �x1� y�

��1�∗← � �x2� y�
��2�∗← � �x3� y� ← · · · �

Computing the derived functors of the limit of such a sequence in the usual manner,
we know that lim�n� is zero for n ≥ 2 and lim, lim�1� are given by the exact sequence

0 → lim
n∈�

� �xn� y� →
∏
n∈�

� �xn� y�
�1−��∗→ ∏

n∈�
� �xn� y� → lim

n∈�
�1�� �xn� y� → 0�

where � 	
∐

n∈� xn →
∐

n∈� xn is constructed as in the definition of the homotopy
colimit. Applying � �p�−� to the commutative squares which define �, we obtain
also commutative squares

for all p ∈ �. According to Proposition 2.1, the ℵ1-perfectness of ����� means that
� �−�

∐
n∈� xn�	� is the coproduct in mod��� of the set

�� �−� xn�	� 	n ∈ ���

thus we deduce � �p� �� = 0. Now � �p� 1− �� = � �p� 1�− � �p� �� = � �p� 1� is an
isomorphism, for all p ∈ �, so 1− � is an isomorphism, because ����� generates � .
Consequently,

lim
n∈�

� �xn� y� = 0 = lim
n∈�

�1�� �xn� y��
�
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Remark 2.4. The hypotheses of Proposition 2.3 are almost identical with those of
[3, Proposition 4.4], except the fact that we require, in addition, the ℵ1-perfectness
for �����. Moreover, the conclusion of [3, Proposition 4.4] (namely, the Adams
spectral sequence abutting � �x� y� is conditionally convergent) is equivalent to our
conclusion (lim and lim�1� to be zero). The proofs are also almost identical. Despite
that, we have given a detailed proof, because, without our additional condition,
we do not see how we can conclude, with our notations, that � �p� �� = 0. Thus we
fill a gap existing in the proof of [3, Proposition 4.4], due to the missing assumption
of ℵ1-perfectness. On the other hand, we do not have a counterexample showing
that the conclusion cannot be inferred without this assumption, so the problem is
open. Note also that the terms of the Adams spectral sequence of [3] do not depend,
for sufficiently large indices, of the choice of the �-projective resolution of x ∈ � ,
so the conclusion of Proposition 2.3 may be formulated simply: The Adams spectral
sequence abutting � �x� y� is conditionally convergent, for any two x� y ∈ � .

Theorem 2.5. Let ����� be an ℵ1-perfectly generating projective class in � . Then
for every x ∈ � , and every choice

0 = x0 → x1 → x2 → x3 → · · ·

of an �-cellular tower for x, we have hocolim xn 
 x.

Proof. The homotopy colimit of the �-cellular tower above is constructed via
triangle ∐

n∈�
xn

1−shift−→ ∐
n∈�

xn → hocolim xn → �
∐
n∈�

xn�

We apply to this triangle the homological functor ∗ �H� which commutes with
countable coproducts. Comparing the resulting exact sequence with the exact
sequence given by Proposition 1.5, we obtain a unique isomorphism

�∗ �H� ��hocolim xn� → �∗ �H� ��x��

which must be induced by the map hocolim xn → x. The generating hypothesis tells
us that hocolim xn 
 x. �

Recall that ℵ1-localizing subcategory of � means triangulated and closed
under countable coproducts.

Corollary 2.6. If ����� is an ℵ1-perfectly generating projective class in � , then � is
the smallest ℵ1-localizing subcategory of � , which contains �.

Proof. Let x ∈ � , and let

0 = x0 → x1 → x2 → x3 → · · ·

be an �-cellular tower for x. Since for every n ≥ 0, there exits a triangle pn →
xn → xn+1 → �pn, with pn ∈ � (see the definition of an �-cellular tower), we may
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ON PERFECTLY GENERATING PROJECTIVE CLASSES 1005

see inductively that xn belongs to the smallest triangulated subcategory of � which
contains �. Now hocolim xn belongs to the smallest ℵ1-localizing subcategory of �
which contains �, and the conclusion follows by Theorem 2.5. �

Remark 2.7. Let ����� be an ℵ1-perfectly generating projective class in � , and
x ∈ � . If we chose an �-phantom tower

�−1x = x0
�0→ x1

�1→ x2
�2→ x3 → · · ·

and an �-cellular tower

0 = x0 → x1 → x2 → x3 → · · ·

for x, then hocolim xn = 0 by Lemma 2.2, and hocolim xn 
 x by Theorem 2.5. Thus
the triangle �−1x → hocolim xn → hocolim xn → x is trivially exact.

Remark 2.8. A filtration analogous to that of Theorem 2.5, for the case of well-
generated triangulated categories may be found in [16, Lemma B 1.3].

3. BROWN REPRESENTABILITY VIA PERFECT PROJECTIVE CLASSES

For two projective classes ����� and �	�
�, we define the product by

� ∗ 	 = add�x ∈ � 	 there is a triangle q → x → p → �q with p ∈ �� q ∈ 	��

and � ∗
 = ��� 	� ∈ �� � ∈ 
�. Generally, by add we understand the closure
under finite coproducts and direct factors. Since in our case the closure under
arbitrary coproducts is automatically fulfilled, add means here simply the closure
under direct factors. Thus �� ∗ 	�� ∗
� is a projective class, by [3, Proposition 3.3].

If ��i��i� for i ∈ I is a family of projective classes, then(
Add

(⋃
I

�i

)
�
⋂
I

�i

)
is also a projective class by [3, Proposition 3.1], called the meet of the above family.

In a straightforward manner we may use the octahedral axiom in order to
show that the product defined above is associative. We may also observe without
difficulties that the product of two (respectively the meet of a family of) �-perfect
projective classes is also �-perfect, where � is an arbitrary regular cardinal.

Consider now a projective class ����� in � . We define inductively �∗0 = �0�,
�∗0 = �→ and �∗i = � ∗�∗�i−1�, �∗i = � ∗ �∗�i−1�, for every non-limit ordinal i > 0.
If i is a limit ordinal then ��∗i��∗i� is defined as the meet of all ��∗j��∗j� with j < i.
Therefore, ��∗i��∗i� is a projective class for every ordinal i, which is called the ith
power of the projective class of ����� (see also [3], for the case of ordinals less or
equal to the first infinite ordinal). Clearly, we have �∗j ⊆ �∗i, for all ordinals j ≤ i.

Remark 3.1. We can inductively see that for x ∈ � it holds xn ∈ �∗n for all n ∈ �,
where xn is the nth term of an �-cellular tower of x.
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For example, if � is compactly generated, and � c denotes the subcategory of
all compact objects, then the projective class induced by � c is obviously perfect,
thus we obtain immediate consequence of Theorem 2.5:

Corollary 3.2 ([2, Corollary 6.9]). If � is compactly generated then any object x ∈ �
is the homotopy colimit hocolim xn of a tower x0 → x1 → · · · , where xn ∈ Add�� c�∗n,
for all n ∈ �.

Consider a contravariant functor F 	 � → �b. For a full subcategory � of � ,
we consider the comma category �/F with the objects being pairs of the form �x� a�,
where x ∈ � and a ∈ F�x�, and maps

��/F���x� a��y� b�� = �� ∈ � �x� y� 	F����b� = a��

Motivated by [14] it is interesting to find weak terminal objects in � /F , that is
objects �t� b� ∈ � /F , such that for every �x� a� ∈ � /F there is a map �x� a� →
�t� b� ∈ �� /F�→. Another equivalent formulation of this fact is that the natural
transformation � �−� t� → F which corresponds under the Yoneda isomorphism to
b ∈ F�t� is an epimorphism. The statement a) of the following lemma is proved by
the same argument as [14, Lemma 2.3]. We include a sketch of the proof for the
convenience of the reader.

Lemma 3.3. Let F 	 � → �b be a cohomological functor which sends coproducts
into products.

a) If ����� and �	�
� are projective classes in � such that ����� is induced by a set
and 	/F has a weak terminal object, then �� ∗ 	�/F has a weak terminal object.

b) If ��i��i�, i ∈ I are projective classes in � with the meet �����, and �i/F has a
weak terminal object for all i ∈ I , then �/F has a weak terminal object.

Proof. a) Let �q� d� be a weak terminal object in 	/F , and let � be a set
which induces the projective class �����. Obviously, �/F has a weak terminal
object �p� c�. Consider an object �y� a� ∈ �� ∗ 	�/F . Thus there is a triangle x →
y → z→�x, with x ∈ 	 and z ∈ �. We have z z′ = ∐

i∈I si for some z′ ∈ � .
We construct the commutative diagram in � whose rows are triangles

We proceeded as follows: The triangle on the second row is obtained as the
coproduct of the initial one with 0 → z′ → z′ → 0, and the maps are the canonical
injections. For d′ = F����a� 0� ∈ F�x�, there is a map f 	 �x� d′� → �q� d� ∈ �	/F�→,
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ON PERFECTLY GENERATING PROJECTIVE CLASSES 1007

since �q� d� is weak terminal. The first bottom square of the diagram above is
homotopy push-out (see [16, Definition 1.4.1 and Lemma 1.4.4]). Clearly y1 ∈ � ∗ 	.
Since F is cohomological, there is a1 ∈ F�y1� such that F����a1� = d and F�g��a1� =
�a� 0�. So if we find a map �y1� a1� → �t� b� ∈ ��� ∗ 	�/F�→ for a fixed object �t� b�,
then the conclusion follows.

If we denote by J ⊆ ⋃
s∈� � �s� �q� the set of all maps si →

∐
i∈I si → �q, then

� factors as
∐

i∈I si
�−→∐

s∈J s → �q, where � is a split epimorphism. Hence the
fibre of � is isomorphic to yJ  z′′, for some z′′ ∈ � and yJ defined as the fibre of
the canonical map

∐
s∈J s → �q. Therefore, �y� a� maps to �t� b� = �t′  p� �b′� c��

where

�t′� b′� =
( ∐

J⊆⋃s∈� � �s��q�

( ∐
u∈F�yJ �

�yJ � u�

))
�

so the object �t� b� is weak terminal in �� ∗ 	�/F .
b) If �ti� ai� ∈ �i/F is a weak terminal object, then �

∐
i∈I ti� �ai�i∈I � is a weak

terminal object in �/F . �

By transfinite induction we obtain the following lemma.

Lemma 3.4. Let ����� be a projective class in � which is induced by a set. For
every ordinal i and every cohomological functor F 	 � → �b which sends coproducts
into products, the category �∗i/F has a weak terminal object.

Remark 3.5. For finite ordinals, Lemma 3.4 is the same as [14, Lemma 2.3]. Note
also that Neeman defined the operation ∗ without to assume the closure under direct
factors, but for a subcategory � of � such that �t� b� is weak terminal in �/F , the
same object is weak terminal in add�/F too.

Proposition 3.6. Let ����� be an ℵ1-perfectly generating projective class in � ,
and let F 	 � → �b be a cohomological functor which sends coproducts into products.
Suppose also that every category �∗n/F has a weak terminal object �tn� bn�, for n ∈ �.
Then � /F has a weak terminal object.

Proof. Denote by I the set of all towers 0 = t0
�0−→ t1

�1−→ t2 → · · · , satisfying
F��n��bn+1� = bn, for all n ∈ �. The set I is not empty since for all n ∈ �, we have
tn ∈ �∗n ⊆ �∗�n+1� and �tn+1� bn+1� is weak terminal in �∗�n+1�/F . Denote also by ti
the homotopy colimits of the tower i ∈ I , and chose bi ∈ F�ti� an element which
maps into �bn�n∈� via the surjective (see the dual of Lemma 1.1) map F�ti� →
limn∈� F�tn�. We claim that

�t� b� =
(∐

i∈I
ti� �bi�i∈I

)
∈ � /F

is a weak terminal object.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
o
d
o
i
,
 
G
e
o
r
g
e
 
C
i
p
r
i
a
n
]
 
A
t
:
 
0
7
:
1
7
 
1
2
 
M
a
r
c
h
 
2
0
1
0



1008 MODOI

In order to prove our claim, let x ∈ � . As we have seen in Theorem 2.5, it is
isomorphic to the the homotopy colimit of its �-cellular tower 0= x0

�0−→ x1
�1−→

x2 → · · · , associated with a choice of an �-phantom tower. Thus consider the
commutative diagram, whose rows are exact by Lemma 1.1 and whose vertical
arrows are induced by the natural transformation corresponding to b ∈ F�t� via the
Yoneda isomorphism

If we would prove that the two extreme vertical arrows are surjective, then the
middle arrow enjoys the same property and our work would be done.

For n ∈ �, we know that �xn ∈ �∗n and �tn� bn� is weak terminal in �∗n,
so there is a map ��xn� an� → �tn� bn� ∈ ��∗n/F�→ for every element an ∈ F��xn�.
Because I �= ∅, there exists i ∈ I , hence we obtain a map

��xn� an� → �tn� bn� → �ti� bi� → �t� b� ∈ �� /F�→

showing that the natural map � ��xn� t� → F��xn� is surjective. Therefore, the first
vertical map in the commutative diagram above is surjective as we may see from the
following commutative diagram with exact rows:

Let show now that the map lim� �xn� t� → lim F�xn� is surjective too. Consider
an element �an� ∈ lim F�xn�, that is, an ∈ F�xn� such that an = F��n��an+1� for all
n ∈ �. We want to construct a commutative diagram

such that the bottom row is a tower in I and F�fn��bn� = an for all n ∈ �.
We proceed inductively as follows: f 0 = 0 and f 1 comes from the fact that �t1� b1�
is weak terminal in �/F . Suppose that the construction is done for the first n

steps. Further we construct a commutative diagram in � , where the rows are
triangles and the second square is homotopy push-out (see [16, Definition 1.4.1 and
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Lemma 1.4.4])

By construction pn ∈ �, hence yn+1 ∈ �∗�n+1�. On the other hand, yn+1 is obtained
via the triangle

xn

(
�n

−fn

)
−→ xn+1  tn → yn+1 → �xn�

therefore, the sequence

F�yn+1� → F�xn+1�× F�tn�
�F��n��−F�fn��−→ F�xn�

is exact in �b. Because F��n��an+1�− F�fn��bn� = an − an = 0, we obtain an element
b′n+1 ∈ F�yn+1� which is sent to �an+1� bn� by the first map in the exact sequence
above. Thus the two maps constructed in the homotopy push-out square above
are actually maps �xn+1� an+1� → �yn+1� b′n+1�, respectively, �tn� bn� → �yn+1� b′n+1�
in �∗�n+1�/F . Since �tn+1� bn+1� is weak terminal in �∗�n+1�/F , they can be
composed with a map �yn+1� b′n+1� → �tn+1� bn+1� ∈ ��∗�n+1�/F�→, in order to obtain
a commutative square

as desired. Denote by i ∈ I the tower constructed above. We have a composed map
F�t� → F�ti� → lim F�tn� → lim F�xn� which sends b ∈ F�t� in turn into bi, then into
�bn�n∈� and finally into �an�n∈�. This shows that the element �an�n∈� ∈ lim F�xn� ⊆∏

F�xn� lifts to an element lying in lim� �xn� t� along the natural map
∏

� �xn� t� →∏
F�xn� which corresponds to b via the Yoneda isomorphism, and the proof of our

claim is complete. �

Recall that we say that � satisfies the Brown representability theorem if
every cohomological functor F 	 � → �b which sends coproducts into products is
representable.

Theorem 3.7. Let � be a triangulated category with coproducts which is ℵ1-perfectly
generated by a projective class �����. Suppose also that every category �∗n/F has
a weak terminal object, for every n ∈ � and every cohomological functor which sends
coproducts into products F 	 � → �b. Then � satisfies the Brown representability
theorem.
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Proof. It is shown in [14, Theorem 1.3] that � satisfies the Brown representability
theorem if and only if every cohomological functor F 	 � → �b which sends
coproducts into products has a solution object, or equivalently, the category
� /F has a weak terminal object. Thus the conclusion follows from this result
corroborated with Proposition 3.6. �

We will say that � is ℵ1-perfectly generated by a set if it is ℵ1-perfectly
generated by a the projective class induced by that set, in the sense above. Thus the
theorem above together with Lemma 3.4 give the following corollary.

Corollary 3.8. Let � be a triangulated category with coproducts which is ℵ1-perfectly
generated by a set. Then � satisfies the Brown representability theorem.

Remark 3.9. Our condition � to be ℵ1-perfectly generated by a set is obviously
equivalent to the hypothesis of [8, Theorem A]. Therefore, Corollary 3.8 is the same
as [8, Theorem A], but with a completely different proof. Note also that every well-
generated triangulated category in the sense of Neeman [16] is perfectly generated
by a set, in the above sense, as it is shown in [11].
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